S-SIFT: A Shorter SIFT without Least Discriminative Visual Orientation

نویسندگان

  • Sheng-hua ZHONG
  • Yan LIU
  • Gangshan WU
چکیده

Detection and description of local features are a classical problem in image processing and multimedia content analysis. Based on the inhomogeneity of visual orientation in human visual system, we propose a novel algorithm S-SIFT to detect and describe local image features. In three stages of SSIFT, the information from the least discriminability orientation is omitting. Compared with the standard SIFT algorithm, S-SIFT has lower dimension and provides a faster keypoint matching. Experiments on the standard dataset demonstrate that our algorithm yields comparable or even better results for feature detection and matching tasks. Keywords-visual orientation; real-world distribution; descriptors; scale-invariant feature transform

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Temporal-Compress and Shorter SIFT Research on Web Videos

The large-scale video data on the web contain a lot of semantics, which are an important part of semantic web. Video descriptors can usually represent somewhat the semantics. Thus, they play a very important role in web multimedia content analysis, such as Scale-invariant feature transform (SIFT) feature. In this paper, we proposed a new video descriptor, called a temporalcompress and shorter S...

متن کامل

Color orthogonal local binary patterns combination for image region description

Visual content description is a key issue for machine-based image analysis and understanding. A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. In this paper, we propose several new local descriptors based on color orthogonal local binary patterns comb...

متن کامل

Image region description using orthogonal combination of local binary patterns enhanced with color information

Visual content description is a key issue for machine-based image analysis and understanding. A good visual descriptor should be both discriminative and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. In this paper, we propose a new operator called the orthogonal combination of local binary patterns (denoted as OC-...

متن کامل

Local Image Descriptor using VQ-SIFT for Image Retrieval

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventi...

متن کامل

DFKI-IUPR participation in TRECVID’09 High-level Feature Extraction Task

Run No. Run ID Run Description infMAP (%) training on TV09 data (type: A) 1 IUPR-VW-TV SIFT visual words with SVMs 8.5 2 IUPR-ADAPT-TV SIFT visual words with PA1SD 5.1 combined training on YouTube and TV09 data (type: C) 3 IUPR-VW+TT-TV SIFT visual words with SVMs, fused with TubeTagger concept detection scores 8.3 4 IUPR-ADAPT-YT SIFT visual words with PA1SD, trained on YouTube, adapted to TV0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013